a2 United States Patent

Demongeot et al.

US009323536B2

US 9,323,536 B2
Apr. 26, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

IDENTIFICATION OF MISSING CALL AND
RETURN INSTRUCTIONS FOR
MANAGEMENT OF A RETURN ADDRESS
STACK

Applicant: ARM LIMITED, Cambridge (GB)

Inventors: Clement Marc Demongeot, Antibes

(FR); Louis-Marie Vincent Mouton,
Vallauris (FR); Jocelyn Francois Orion
Jaubert, Antibes (FR)

Assignee: ARM Limited, Cambridge (GB)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 539 days.

Appl. No.: 13/875,704

Filed: May 2, 2013

Prior Publication Data

US 2014/0331028 A1 Now. 6, 2014

Int. Cl1.
GO6F 9/00

GO6F 9/44
GO6F 9/34
GO6F 9/38
GO6F 9/30

U.S. CL
CPC

(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

GO6F 9/3861 (2013.01); GOGF 9/30054
(2013.01); GO6F 9/3806 (2013.01)

Field of Classification Search

None

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,507,030 A *  4/1996 Sites ... GOG6F 8/30
712/E9.028
5,721,855 A * 2/1998 Hinton .............. GO6F 9/30152
711/E12.049
8,738,860 B1* 52014 Griffin ............. GO6F 12/0897
711/122
2010/0161951 Al* 6/2010 Chiou ......ccoo.. GOG6F 9/3806
712/240
2014/0317390 Al* 10/2014 Demongeot .......... GOG6F 9/3844
712/239

OTHER PUBLICATIONS

K. Skadron et al., “Improving Prediction for Procedure Returns with
Return-Address Stack Repair Mechanisms”, IEEE, 1998, pp. 259-
271.

G. Chiu et al., “Mechanism for Return Stack and Branch History
Corrections Under Misprediction in Deep Pipeline Design”, IEEE,
2008, 8 pages.

V. Desmet et al., “Correct Alignment of a Return-Address-Stack after
Call and Return Mispredictions”, Dept. of Electronics and Informa-
tion Systems, Ghent University, Belgium, Department of Computer
Science, University of Cyprus, Nicosia, 9 pages.

* cited by examiner

Primary Examiner — Michael Sun
(74) Attorney, Agent, or Firm — Nixon & Vanderhye P.C.

(57) ABSTRACT

A data processing apparatus and method of data processing
are disclosed. A fetch unit retrieves program instructions
comprising call instructions and return instructions from
memory to be executed by an execution unit. A branch pre-
diction unit generates a return address prediction for an iden-
tified return instruction with reference to a return address
stack. The branch prediction unit performs a return address
push onto said return address stack when the execution unit
executes a call instruction and performs a return address pop
from the return address stack when the execution unit
executes a return instruction. An error detection unit identifies
a missing call instruction or a missing return instruction in
said program instructions by reference to the return address
prediction, a resolved return address indicated by the execu-
tion unit when the return instruction is executed and the
content of the return address stack.

19 Claims, 5 Drawing Sheets

DATA PROCESSING APPARATUS

’/10
FETCHUNIT [ -12 EXECUTION UNIT
14
BRANCH PREDICTION UNIT |.~16
CALL/RETURN
RET'URN 20 EXgCUTIOCI;I
ERROR [* INFORMATION
DETEET\ON |—»| STACK
CORRECTION I 1
LAST
POPPED .
22 24/ ENTRY E
INSTRUCTIONS i prepN 28
RETRIEVED RETURN INSTRUCTION N |26
FROM INDENTIFICATION INST
MEMORY 18




US 9,323,536 B2

Sheet 1 of 5

Apr. 26,2016

U.S. Patent

0L

AJONAN
WOYA

I Ol
wv/

A SN |« NOLLYOIILNIANT |,
9¢ N NOILONYLSNI NYNL3Y
gz~ NOdd = I

m AYINT | -VC Nm
d3dd0d
m 1SY1
: T NOILOIHHO0D
! | v ?
m WOVLS [ NOILO313d
NOLLYNMOANI | =T s BN EN N RO E
NOILND3X3 oz
NYNLIY / TTVD 4 -
gL-1 LINN NOILOIQIHd HONVHE
N4
1INQ NOILND3X3 ZL-] LINnHOL34

SNLVYVddY ONISS300dd VLVA

d3n3ld13d
SNOILONYLSNI



U.S. Patent Apr. 26,2016 Sheet 2 of 5 US 9,323,536 B2

40  MISSING RETURN'
CALL1 |/
CALL 2
: TARGET PREDICTION
CALL3 ® 3 > FOR RETURN@?
: |S |I3||
RETURN@2 %
RETURN@! RETURN STACK
AFTER CALL 3
RETURN@?2
EXUCUTED
)
ENTRY POPPED >
FROM STACK :
RETURN STACK
AFTER RETURN@?2

© TARGETADDRESS OF RETURN@?2 # TARGET PREDICTION (3)

COMPARE TARGET

ADDRESS OF RETURN@?2
TO STACK @ TARGET ADDRESS OF RETURN@?2

IS ON TOP OF STACK

=N

® POPADDITIONAL ENTRY
FROM STACK

FIG. 2



U.S. Patent Apr. 26,2016 Sheet 3 of 5 US 9,323,536 B2
"MISSING CALL"
caL1 P20
CALL 2
: TARGET PREDICTION
RETURN@3 | ® = FOR RETURN@3
: 2 |S ||2||
RETURN@2 <
RETURN@1 RETURN STACK
AFTER CALL 2
RETURN@3
EXUCUTED
&
ENTRY POPPED
FROM STACK 1
RETURN STACK
AFTER RETURN@3

(© TARGET ADDRESS OF RETURN@3 # TARGET PREDICTION (2)

COMPARE TARGET

ADDRESS OF RETURN@3

TO STACK

TARGET ADDRESS OF RETURN@3

IS NOT ON TOP OF STACK

RESTORE POPPED
ENTRY TO STACK

—=1INo

FIG. 3



U.S. Patent Apr. 26,2016 Sheet 4 of 5 US 9,323,536 B2

100 191
EXECUTION PUSH RETURN ADDRESS
UNIT INDICATES
ASSOCIATED WITH THAT
EXECUTION OF A CALL L NSTRUCTON
INSTRUCTION
” ONTO RETURN STACK
102 103
EXEGUTION £
UNIT INDICATES POP RETURN
EXECUTION OF A RETURN ADDRESS FROM
INSTRUCTION RETURN STACK
?

[

104

MISPREDICTION

OF TARGET ADDRESS

FOR RETURN

INSTRUCTION
?

PERFORM ERROR
CORRECTION
PROCEDURE

FIG. 4



U.S. Patent Apr. 26,2016 Sheet 5 of 5 US 9,323,536 B2
MISPREDICTION OF TARGET [ 110
ADDRESS FOR RETURN INSTRUCTION
REAL TARGET
ADDRESS = = ADDRESS
ON TOP OF RETURN
STACK?
Yy \
MISSING RETURN [ 112 14| wmissiNG cALL
INSTRUCTION INSTRUCTION
Yy \
POPADDITIONAL | ~113 115~ | RESTORE POPPED
ENTRY FROM ADDRESS TO
STACK STACK

FIG. 5



US 9,323,536 B2

1
IDENTIFICATION OF MISSING CALL AND
RETURN INSTRUCTIONS FOR
MANAGEMENT OF A RETURN ADDRESS
STACK

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a data processing apparatus
configured to execute call and return instructions, and to
generate return address predictions for identified return
instructions with reference to a return address stack.

2. Background

It is known for a data processing apparatus to execute
program instructions which comprise both call and return
instructions, wherein a call instruction causes the data pro-
cessing apparatus to depart from sequential program instruc-
tion execution to execute a further sequence of program
instructions until a return instruction is encountered when the
data processing apparatus then returns to the original sequen-
tial program instruction flow following the call instruction
which caused the departure. Such a data processing apparatus
may be provided with a branch prediction unit which is con-
figured to generate a return address prediction for an identi-
fied return instruction in the sequence of program instructions
being executed, such that the data processing apparatus can
already begin fetching the expected sequence of program
instructions after that return instruction and passing them to
the execution pipeline before that return instruction is actu-
ally executed, to avoid delays associated with the instruction
fetching and pipelining process.

The return address prediction may be generated on the
basis of the content of a return address stack which the data
processing apparatus maintains for this purpose. A return
address is pushed onto the return address stack when a call
instruction is executed (this return address typically being the
address of the instruction sequentially following the call
instruction) and for each return instruction which is executed,
a return address is popped from the top of the return address
stack. The content of the return address stack, in particular the
return address on top of the return address stack, can then be
used to provide a prediction of the return address.

This hardware-based mechanism for generating return
address predictions is however reliant on the software written
for the data processing apparatus adhering to an expected
structure, in particular that call and return instructions in the
program flow are logically paired. When this is not the case,
i.e. when there is a broken call-return flow in the software, the
functionality of the return address stack breaks down. Previ-
ously this would have been addressed by seeking to improve
the software or the compilers.

In the case of a data processing apparatus configured to
perform speculative instruction execution, various mecha-
nisms have been implemented to respond to speculation
errors, yet these do not address the issue of a broken call-
return flow. These are: “Improving Prediction for Procedure
Returns with Return-Address-Stack Repair Mechanisms”,
Skadron, K. and Ahuja, P. S. and Martonosi, M. and Clark, D.
W. —Proceedings of the 31st annual ACM/IEEE interna-
tional symposium on Microarchitecture—1998; “Mecha-
nism for return stack and branch history corrections under
misprediction in deep pipeline design”, Chiu, G.Y. and Yang,
H.C.and Li, W.Y. H. and Chung, C. P. —Computer Systems
Architecture Conference, 2008. ACSAC 2008. 13th Asia-
Pacific—2008; and “Correct alignment of a return-address-
stack after call and return mispredictions™, Desmet, V. and

10

15

20

25

30

35

40

45

50

55

60

65

2

Sazeides, Y. and Kourouyiannis, C. and De Bosschere, K.
—Workshop on Duplicating, Deconstructing and Debunk-
ing—2005.

SUMMARY

Viewed from a first aspect, there is provided a data pro-
cessing apparatus comprising a fetch unit configured to
retrieve program instructions from memory, wherein said
program instructions comprise call instructions and return
instructions; and

an execution unit configured to carry out data processing
operations by executing said program instructions,

wherein said fetch unit comprises:

a branch prediction unit configured to generate a return
address prediction for an identified return instruction in said
program instructions with reference to a return address stack,
wherein said branch prediction unit is configured to perform
areturn address push onto said return address stack when said
execution unit executes a call instruction and is configured to
perform a return address pop from said return address stack
when said execution unit executes a return instruction; and

an error detection unit configured to identify a missing call
instruction in said program instructions, and configured to
identify a missing return instruction in said program instruc-
tions, by reference to:

said return address prediction;

a resolved return address indicated by said execution unit
when said execution unit executes said return instruction; and

content of said return address stack.

The inventors of the present invention have realised that it
would be advantageous to provide a mechanism for coping
with a broken call-return flow in program instructions being
executed by a data processing apparatus which uses a return
address stack to generate return address predictions for iden-
tified return instructions in those program instructions, where
that return address stack is non-speculative, i.e. architectural.
In particular, by providing a hardware based mechanism for
doing this, the complexities typically associated with a soft-
ware-based repair mechanisms are avoided and the data pro-
cessing apparatus may be made more resilient to changes
resulting from software evolution. For example, whilst a bro-
ken call-return flow may result from poorly written software,
the present inventors have realised that this may also result
from seeking to execute legacy software originally written for
an older data processing apparatus. For example, changes in
assembler syntax can mean that the call-return flow only
breaks once the software is ported to a newer data processing
apparatus for which changes in the assembler syntax may
mean that although the software generally executes correctly,
the return address prediction functionality provided by use of
the return address stack may not, and thus the performance of
the data processing apparatus when executing this software
may suffer. There are indeed various different ways in assem-
bler to code a call and return sequence and the evolution of
assembler syntax can mean that some of these ways will not
be properly recognised by the return address prediction
mechanisms of a newer data processing apparatus. However,
the present invention addresses this issue by providing an
error detection unit in the data processing apparatus which
can identify either a missing call instruction or a missing
return instruction in the program instructions by comparison
of a return address prediction made for an identified return
instruction with the resolved return address when that return
instruction is executed and the content of the return address
stack.



US 9,323,536 B2

3

For example, the error detection unit may be configured to
identify the missing return instruction in the program instruc-
tions retrieved from the memory when the return address
prediction generated by the branch prediction unit is not equal
to the resolved return address (i.e. a misprediction has
occurred) and the resolved return address is found on top of
the return address stack. The fact that the resolved return
address has been found on top of the return address stack,
whilst the execution of the return instruction has already
caused a return address to be popped from the return address
stack, indicates that an unpaired call instruction (i.e. one
without an associated return instruction) has caused a return
address to be pushed on to the return address stack, it being
this return address which was popped in this response to the
execution of the return instruction, thus leaving the return
address corresponding to the return instruction on top of the
return address stack.

The error detection unit may be configured to identify the
missing call instruction in the program instructions retrieved
from the memory when the return address prediction gener-
ated by the branch prediction unit is not equal to the resolved
return address (i.e. a misprediction has occurred) and the
resolved return address is not found on top of the return
address stack. When the return address prediction generated
by the branch prediction unit is not equal to the resolved
return address, the fact that the resolved return address is not
found on top of the return address stack is indicative of the
fact that the return instruction for which the resolved return
address has been indicated did not have an associated call
instruction in the sequence of program instructions.

For the event that the error detection unit identifies either a
missing call instruction of a missing return instruction in the
program instructions, the error detection unit may further
comprises an error correction unit configured to perform an
error correction procedure in response to identification by
said error detection unit of one of said missing call instruction
and said missing return instruction in said program instruc-
tions.

Various error correction procedures may be envisaged, but
in response to identification by the error detection unit of a
missing return instruction, the error correction procedure
may comprise performing an additional return address pop
from the return address stack. Hence, in the situation where
the resolved return address has been found on top ofthe return
address stack, correct alignment of the return address stack
with respect to the call-return instruction flow may be
achieved by popping that return address from the return
address stack.

As another error correction procedure, when a missing call
instruction is identified by the error detection unit, the error
correction procedure may comprise causing a popped return
address resulting from the return address pop to be returned to
the return address stack. In this situation the absence of a call
instruction from the program instructions has meant that a
return address corresponding to that call instruction will not
have been pushed onto the return address stack, and hence the
subsequent execution of an unpaired return address will have
meant that a return address has been popped from the return
address stack unnecessarily. By causing the return address
which was popped to be returned to the return address stack
this return address is then correctly in place for when the
correct return instruction to which this return address belongs
(i.e. with its correctly paired call instruction) is encountered.

The return of the popped return address to the return
address stack may take place in a number of different ways.
For example, the data processing apparatus may be config-
ured to store a return address which is popped from the return

30

40

45

55

4

address stack in a storage unit in the fetch unit, and in this case
the error detection unit can be configured to return the popped
return address to the return address stack from the storage unit
in the fetch unit. In another example, the error detection unit
may be configured to return the popped return address to the
return address stack from the execution unit. For example, in
embodiments where the return address is popped from the
return address stack when the return address prediction is
provided, and the return address prediction passes through the
execution pipeline in association with the return instruction,
this may provide the source of the popped return address for
returning to the return address stack.

The error correction procedure may comprise flushing the
return address stack.

Viewed from a second aspect there is provided a data
processing apparatus comprising means for retrieving pro-
gram instructions from memory, wherein said program
instructions comprise call instructions and return instruc-
tions;

means for carrying out data processing operations by
executing said program instructions;

means for performing a return address push onto a return
address stack when a call instruction is executed;

means for generating a return address prediction for an
identified return instructions identified in said program
instructions with reference to a return address stack;

means for performing a return address pop from said return
address stack when a return instruction is executed; and

means for identifying a missing call instruction in said
program instructions, and for identifying a missing return
instruction in said program instructions, by reference to:

said return address prediction;

a resolved return address indicated when said means for
carrying out data processing operations executes said return
instruction; and

content of said return address stack.

Viewed from a third aspect, there is provided a method of
data processing comprising the steps of:

in a fetch unit retrieving program instructions from
memory, wherein said program instructions comprise call
instructions and return instructions;

in an execution unit carrying out data processing opera-
tions by executing said program instructions;

performing a return address push onto a return address
stack when a call instruction is executed;

generating a return address prediction for an identified
return instruction in said program instructions with reference
to a return address stack;

performing a return address pop from said return address
stack when a return instruction is executed; and

identifying one of a missing call instruction and a missing
return instruction in said program instructions retrieved from
said memory by reference to:

said return address prediction;

a resolved return address indicated by said execution unit
when said return instruction is executed; and

content of said return address stack.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described further, by way of
example only, with reference to embodiments thereof as illus-
trated in the accompanying drawings, in which:

FIG. 1 schematically illustrates a data processing appara-
tus comprising a fetch unit and an execution unit in one
embodiment;



US 9,323,536 B2

5

FIG. 2 schematically illustrates the evolution of the content
of a return stack in one embodiment when a sequence of
program instructions are executed in which a return instruc-
tion is missing;

FIG. 3 schematically illustrates the evolution of the content
of a return stack in one embodiment when a sequence of
instructions are executed in which a call instruction is miss-
ing;

FIG. 4 schematically illustrates a sequence of steps which
are taken in one embodiment when a data processing appa-
ratus executes call instructions and return instructions; and

FIG. 5 schematically illustrates a series of steps which are
taken in one embodiment when misprediction of a target
address for a return instruction occurs.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG. 1 schematically illustrates a data processing appara-
tus 10 which comprises a fetch unit 12 and an execution unit
14. The fetch unit 12 is configured to retrieve program
instructions from memory (not shown) which are then passed
to the execution unit 14 for execution. In order to be able to
provide the execution unit 14 with as continuous a sequence
of instructions for execution as possible, i.e. without the
execution unit 14 having to wait whilst instructions are
retrieved from memory, the fetch unit 12 comprises a branch
prediction unit 16 configured to make predictions for target
addresses of branch instructions (i.e. instructions which cause
a change of program flow—a departure from sequential pro-
gram instruction execution). On the basis of these target
address predictions, the fetch unit 12 can continue to retrieve
sequential program instructions from memory following that
predicted target address, on the basis of the expectation of that
branch being taken.

The fetch unit 12 is in particular configured to identify
return instructions (by means of return instruction identifica-
tion unit 18) in the sequence of program instructions being
retrieved from memory and passed to execution unit 14. In
FIG. 1 return instruction identification unit 18 is schemati-
cally illustrated in terms of this particular function, but it will
be recognised that this may for example be provided by a
branch table such as a branch target buffer or a branch target
address cache. In order to generate target address predictions
for instructions recognised as return instructions, the branch
prediction unit comprises a return stack 20 configured to store
return addresses for return instructions. The fetch unit 12, and
in particular the branch prediction unit 16, receives call and
return execution information from the execution unit 14, and
for each architecturally executed call instruction, the corre-
sponding return address is pushed on top of the return stack 20
(here this return address being the address of the instruction
which follows the call instruction). For each architecturally
executed return instruction indicated by the executionunit 14,
the return stack pops the top of the stack. Accordingly, when
a sequence of call instructions are encountered, a number of
return addresses are correspondingly pushed onto the stack,
such that when the corresponding return instructions are later
encountered, the branch prediction unit 16 can generate target
address predictions on the basis of these return addresses in
order to provide the execution unit 14 with a continuous
sequence of program instructions for execution. When the
corresponding return instructions are executed by the execu-
tion unit 14, the corresponding return addresses on the return
stack are popped.

Whilst it would normally be expected that call and return
instructions would be paired in the encountered program

15

35

40

45

65

6

instructions, as mentioned above it has been recognised that
this may in fact not always be the case, whether being due to
poorly coded software, or perhaps simply due to the evolution
of'assembler syntax meaning that a call/return intended to be
present by the programmer will not be recognised as such by
the data processing apparatus. An unpaired call or return
instruction will disrupt the usual operation of the return stack
20, and for this reason the branch prediction unit 16 further
comprises an error detection and correction unit 22 config-
ured to monitor for the occurrence of such problems and to
take appropriate corrective action. In particular, as will be
explained in more detail with reference to the examples which
follow, the error detection unit 22 is configured to identify
such errors on the basis of an identified misprediction by the
branch prediction unit (when the target address predicted by
the branch prediction unit for a return instruction does not
correspond to the resolved return address indicated by the
execution unit 14 when that return instruction was executed)
and with reference to the content of the return stack 20.
Further details of how this happens are described with refer-
ence to the figures which follow. However note that branch
prediction unit 16 further comprises a last popped entry stor-
age unit 24. This storage unit is configured to store the most
recently popped entry from the return stack 20 such that, as
part of a correction procedure, it may be returned to the return
stack 20 when necessary. As an alternative to this arrange-
ment, note that execution unit 14 in FIG. 1 is schematically
shown with instruction 26 and an associated prediction 28. In
other words, for an instruction passed to the execution unit 14
which has been identified as a return instruction, it may be
accompanied by a target address prediction 28 provided by
the return stack 20. As such, as the return instruction
progresses through the execution pipeline, it may be accom-
panied by its target address prediction. This not only facili-
tates the identification within the execution unit 14 of when a
misprediction has occurred (by comparison of this targeted
address prediction 28 with the resolved return address result-
ing from execution of the return instruction) but also in some
embodiments this target address prediction 28 may provide
the source of a return address which may be returned to the
return stack 20 as part of a correction procedure carried out by
the error detection and correction unit 22. This will be
explained in more detail in the following.

FIG. 2 schematically illustrates the evolution of the content
of the return stack 20 when a sequence of program instruc-
tions 40 are retrieved from memory by the fetch unit 12 for
execution by execution unit 14. In the sequence of program
instructions 40, only the call and return instructions are
shown and note in particular that whilst the first two call
instructions (CALL 1 and CALL 2) have corresponding
return instructions (RETURN@1 and RETURN@?2), a cor-
responding return instruction for call instruction CALL 3 is
missing. Note that here the notation “RETURN@1” means a
RETURN instruction to the instruction following the instruc-
tion CALL 1 in the program sequence. Stage “A” illustrates
the content of return stack 20 after CALL 3 has been
executed, when the execution ofthe three call instructions has
caused respective return addresses to be pushed onto the
return stack 20. Then, when RETURN@2 is identified within
fetch unit 12, the branch prediction unit 16 refers to the top of
return stack 20 to make its target prediction for this return
address. Accordingly, the target prediction for RETURN@2
is “3” (i.e. the return address pushed onto the return stack by
the execution of instruction CALL 3.

Later, at stage “B”, the execution of RETURN@?2 causes
an entry to be popped from the top of return stack 20 such that
following the execution of RETURN@2 the return stack 20



US 9,323,536 B2

7

then comprises entries 1 and 2. When RETURN@?2 is
executed and its return address is resolved, it is identified that
this resolved target address (2) is not equal to the target
address prediction (3) made by the branch prediction unit 16
for this instruction. Hence at stage “C” the error detection and
correction unit 22 then compares the resolved target address
of RETURN @2 to the content of the return stack 20 and finds
that this target address is currently on top of the stack. This
indicates to that a return instruction was missing in the
sequence of program instructions 40 and in response, at stage
“D”, the error detection and correction unit 22 causes an
additional entry to the popped from the return stack 20, thus
leaving only the single entry “1” remaining in the stack.
Subsequently, when RETURN@] is identified in the fetch
unit 12, the branch prediction 16 will be able to correctly
predict the target address for this return instruction.

FIG. 3 schematically illustrates another example in which
a sequence of program instructions 50 are retrieved by the
fetch unit 12 for execution by the execution unit 14 in which
there is an unpaired return instruction, i.e. there is no corre-
sponding call instruction for the return instruction
RETURN@3. Accordingly, in the situation illustrates at stage
“A”, the return stack 20, following the execution of instruc-
tion CALL 2, comprises return addresses pushed onto the
return stack for the two call instructions. Then, when the
return instruction RETURN@?3 is identified in the fetch unit
12, the branch unit 16 refers to the top of the return stack 20
and generates return address 2 as its target address prediction
for RETURN@3. Thereafter, at stage “B”, when
RETURN@3 is executed, an entry is popped from the return
stack 20 and thus only the return address 1 remains on the
return stack immediately following the execution of
RETURN @3. The execution of RETURN@3 also resolves
the return address for this return instruction, and the mispre-
diction for this instruction is then identified (stage “C”) in that
the target return address (3) for this instruction is not the same
as the target address prediction (2) made. This causes the error
detection and correction unit 22 to compare the resolved
target address (3) to the top of the return stack 20, where it is
found that the target address of RETURN@3 is not on top of
the return stack. This indicates that a call instruction was
missing from the sequence of program instructions 50. Then,
in response at stage “D”, the error detection and correction
unit 22 causes the last popped entry from the return stack 20
to be restored. This may for example be performed by return-
ing this entry from the last popped entry unit 24 to the return
stack 20. Hence, following stage D, the content of the return
stack 20 comprises return addresses 1 and 2, which are then
correctly in place to make predictions for the target return
addresses when return instructions RETURN@2 and
RETURN@] are encountered by the fetch unit 12.

FIG. 4 schematically illustrates a sequence of steps which
are taken by the data processing apparatus 10 in one embodi-
ment. The flow can be considered to begin at stage 100 where
it is determined if the execution unit 100 indicates that execu-
tion of acall instruction has taken place. If it has, then the flow
proceeds to step 101, where a return address associated with
that call instruction is pushed onto the return stack 20 and the
flow returns to step 100. If however at step 100 no call instruc-
tion execution is indicated by the execution unit, then the flow
proceeds to step 102 where it is determined if the execution
unit indicates execution of a return instruction. If it does not
then the flow simply loops back to step 100 for the on-going
process of monitoring for indication of call/return instruction
execution by the execution unit 14 to continue. When, at step
102 the execution unit does indicate execution of a return
instruction then the flow proceeds to step 103, where a return

20

25

40

45

50

8

address is popped from the return stack 20. The flow then
proceeds to step 104 where it is determined if there has been
a misprediction of the target return address for this return
instruction, i.e. if the predicted return address generated with
respect to the top of the return stack 20 does not match the
resolved return address when this return instruction was
executed. If such a misprediction has not occurred, then the
flow simply loops back to step 100. If however a mispredic-
tion has occurred then the flow proceeds to 105 for an error
correction procedure to be carried out. Example error correc-
tion procedures have already been described above with ref-
erence to FIGS. 2 and 3. In an alternative embodiment how-
ever a simple response to identification of misprediction of a
target address for return instruction may be to flush the return
stack, but this is not preferred because existing content of the
return stack, which may still be used for correct target address
prediction, is lost.

FIG. 5 schematically illustrates a sequence of steps which
may be carried out to perform an error correction procedure
such as that mentioned at step 105 of FIG. 4. The illustrated
flow begins at step 110 when the misprediction of a target
return address for a return instruction is identified. At step 111
it is determined (by the error detection and correction unit 22)
if the real target address (i.e. the resolved target address for
the executed return instruction) is the same as the address
currently on top of the return stack 20. If it is then the flow
proceeds to step 112, where the conclusion is drawn that a
return instruction is missing from the sequence of instructions
encountered by the data processing apparatus 10. This being
the case, at step 113 the error detection and correction unit 22
causes an additional entry to be popped from the return stack
20. Conversely, if at step 112 it is found that the real target
address does not match the address currently on the top of the
return stack 20 then the flow proceeds to step 114 where it is
concluded that a call instruction was missing from the
sequence of program instructions encountered by the data
processing apparatus 10. This being the case then at step 115
the error detection and correction unit 22 causes the last
popped entry from the return stack to be restored.

Although particular embodiments of the invention have
been described herein, it will be apparent that the invention is
not limited thereto, and that many modifications and addi-
tions may be made within the scope of the invention. For
example, various combinations of the features of the follow-
ing dependent claims could be made with the features of the
independent claims without departing from the scope of the
present invention.

We claim:

1. A data processing apparatus comprising:

a fetch unit configured to retrieve program instructions
from memory, wherein said program instructions com-
prise call instructions and return instructions; and

an execution unit configured to carry out data processing
operations by executing said program instructions,

wherein said fetch unit comprises:

a branch prediction unit configured to generate a return
address prediction for an identified return instruction in
said program instructions with reference to a return
address stack, wherein said branch prediction unit is
configured to perform a return address push onto said
return address stack when said execution unit executes a
call instruction and is configured to perform a return
address pop from said return address stack when said
execution unit executes a return instruction; and

an error detection unit configured to identify a missing call
instruction in said program instructions, and configured



US 9,323,536 B2

9

to identify a missing return instruction in said program
instructions, by reference to:

said return address prediction;

a resolved return address indicated by said execution unit
when said execution unit executes said return instruc-
tion; and

content of said return address stack.

2. The data processing apparatus as claimed in claim 1,
wherein said error detection unit is configured to identify said
missing return instruction in said program instructions
retrieved from said memory when said return address predic-
tion generated by said branch prediction unit is not equal to
said resolved return address and said resolved return address
is found on top of said return address stack.

3. The data processing apparatus as claimed in claim 1,
wherein said error detection unit is configured to identify said
missing call instruction in said program instructions retrieved
from said memory when said return address prediction gen-
erated by said branch prediction unit is not equal to said
resolved return address and said resolved return address is not
found on top of said return address stack.

4. The data processing apparatus as claimed in claim 1,
wherein said error detection unit further comprises an error
correction unit configured to perform an error correction pro-
cedure in response to identification by said error detection
unit of one of said missing call instruction and said missing
return instruction in said program instructions.

5. The data processing apparatus as claimed in claim 4,
wherein said error correction procedure, in response to iden-
tification by said error detection unit of said missing return
instruction, comprises performing an additional return
address pop from said return address stack.

6. The data processing apparatus as claimed in claim 4,
wherein said error correction procedure, in response to iden-
tification by said error detection unit of said missing call
instruction, comprises causing a popped return address
resulting from said return address pop to be returned to said
return address stack.

7. The data processing apparatus as claimed in claim 6,
wherein said error detection unit is configured to return said
popped return address to said return address stack from a
storage unit in said fetch unit.

8. The data processing apparatus as claimed in claim 6,
wherein said error detection unit is configured to return said
popped return address to said return address stack from said
execution unit.

9. The data processing apparatus as claimed in claim 4,
wherein said error correction procedure comprises flushing
said return address stack.

10. A data processing apparatus comprising:

means for retrieving program instructions from memory,
wherein said program instructions comprise call instruc-
tions and return instructions;

means for carrying out data processing operations by
executing said program instructions;

means for performing a return address push onto a return
address stack when a call instruction is executed;

means for generating a return address prediction for an
identified return instructions identified in said program
instructions with reference to a return address stack;

means for performing a return address pop from said return
address stack when a return instruction is executed; and

means for identifying a missing call instruction in said
program instructions, and for identifying a missing
return instruction in said program instructions, by refer-
ence to:

10

15

20

25

30

35

40

45

50

55

60

65

10

said return address prediction;

a resolved return address indicated when said means for
carrying out data processing operations executes said
return instruction; and

content of said return address stack.

11. A method of data processing comprising the steps of:

in a fetch unit retrieving program instructions from
memory, wherein said program instructions comprise
call instructions and return instructions;

in an execution unit carrying out data processing opera-
tions by executing said program instructions;

performing a return address push onto a return address
stack when a call instruction is executed,

generating a return address prediction for an identified
return instruction in said program instructions with ref-
erence to a return address stack;

performing a return address pop from said return address
stack when a return instruction is executed; and

identifying one of a missing call instruction and a missing
return instruction in said program instructions retrieved
from said memory by reference to:

said return address prediction;

a resolved return address indicated by said execution unit
when said return instruction is executed; and

content of said return address stack.

12. The method of data processing as claimed in claim 11,
wherein identifying said missing return instruction in said
program instructions retrieved from said memory occurs
when said return address prediction is not equal to said
resolved return address and said resolved return address is
found on top of said return address stack.

13. The method of data processing as claimed in claim 11,
wherein identifying said missing call instruction in said pro-
gram instructions retrieved from said memory occurs when
said return address prediction is not equal to said resolved
return address and said resolved return address is not found on
top of said return address stack.

14. The method of data processing as claimed in claim 11,
further comprising performing an error correction procedure
in response to identification of absence of one of said missing
call instruction and said missing return instruction in said
program instructions.

15. The method of data processing as claimed in claim 14,
wherein said error correction procedure, in response to iden-
tification of said missing return instruction, comprises per-
forming an additional return address pop from said return
stack.

16. The method of data processing as claimed in claim 14,
wherein said error correction procedure, in response to iden-
tification of said missing call instruction, comprises causing a
popped return address resulting from said return address pop
to be returned to said return address stack.

17. The method of data processing as claimed in claim 16,
comprising returning said popped return address to said
return address stack from a storage unit in said fetch unit.

18. The method of data processing as claimed in claim 16,
comprising returning said popped return address to said
return address stack from said execution unit.

19. The method of data processing as claimed in claim 14,
wherein said error correction procedure comprises flushing
said return address stack.

#* #* #* #* #*



